Šperos.lt > Matematika > Atsitiktiniai procesai (3)

Atsitiktiniai procesai (3)

www.speros.ltwww.speros.ltwww.speros.ltwww.speros.ltwww.speros.lt
9.5
  (
2
atsiliepimai)
Atsisiųsti šį darbą
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
www.speros.lt
Aprašymas:
Duotas atsitiktinis procesas. Dydžių ir kovariacinė matrica. Apskaičiuokite (t) koreliacinę funkciją ir dispersiją. Apskaičiuokite atsitiktinio proceso koreliacinę funkciją. Sugeneruokite proceso realizacijų ir apskaičiuokite empirinį proceso vidurkį ir empirinę dispersiją. Palyginkite jas su teorinėmis proceso charakteristikomis. Raskite stacionaraus sprendinio spektrinį tankį, dispersiją ir vidurkį. Kiek kartų diferencijuojamas stacionarusis procesas? Sistema S yra techninis įrenginys, sudarytas iš N blokų, profilaktiškai tikrinamas ir remontuojamas laiko momentas t1, t2,...,tk. Po kiekvieno žingsnio (patikrinimo ir remonto) sistema gali būti vienoje iš būsenų. E0 – visi blokai veikia (nė vienas nekeičiamas nauju), E1 – vienas blokas keičiamas nauju, kiti veikia gerai, E2i – du blokai keičiami naujais, kiti veikia gerai (i<N), ..., EN – visi blokai pakeisti naujais. Užrašykite sistemos perėjimo per vieną žingsnį tikimybių matricą. Sudarykite sistemos būvių grafą. Apskaičiuokite perėjimo tikimybių per n žingsnių matricą. Suklasifikuokite būvius. Ar grandinė ergodinė? Jei taip, apskaičiuokite finalines tikimybes. Apskaičiuokite sistemos būvių tikimybes po m žingsnių.
Rodyti daugiau
Darbo tipas:Namų darbai
Kategorija:
Apimtis:

9 psl.

Lygis:

3 klasė / kursas

Švietimo institucija:

Kauno Technologijos Universitetas

Failo tipas:

Microsoft Word 129.29 KB

Atrask reikiamos informacijos šiame darbe!Atsisiųsti šį darbą