Išplėstinė paieška
 
 
 
Pradžia>Matematika>Matematinė statistika (14)
   
   
   
naudingas 0 / nenaudingas 0

Matematinė statistika (14)

  
 
 
1234567891011121314151617181920212223242526272829
Aprašymas

Matematinės statistikos savarankiški darbai Nr.58. 8 uždaviniai. Pirmas uždavinys. Uždavinio formulavimas. Žinoma n = 50 tiriamo požymio reikšmių. Sudaryti intervalinę statistinę eilutę, kai intervalų skaičius k = 5, ir nubrėžti santykinių dažnių histogramą. Apskaičiuoti imties vidurkį, dispersiją, patikslintąją dispersiją bei vidutinius kvadratinius nuokrypius. Ar apskaičiuota teisingai, pasitikrinti, pritaikius prie imčių pateiktas kontrolines sumas. Uždavinio sprendimas. Antras uždavinys. Uždavinio formulavimas. Žinoma, kad atsitiktinis dydis (a.d.) X yra normalusis. Jo parametras a nežinomas, o žinomas: yra 1a uždavinyje gautam , kuris imamas su vienu ženklu po kablelio ( neapvalinant). Turėdami imtį, kurios didumas n = 50, ir parinkę pasikliovimo lygmenį 0,99, rasti parametro a pasikliautinąjį intervalą. Žinoma, kad atsitiktinis dydis (a.d.) X yra normalusis. Turėdami imtį, kurios didumas n = 50. Taikydami 1a uždavinyje gautas ir reikšmes, parinkę pasikliovimo lygmenį 0,95, rasti parametro a pasikliautinąjį intervalą. Žinoma, kad atsitiktinis dydis (a.d.) X yra normalusis. Jo parametrai a ir nežinomi. Turėdami imtį, kurios didumas n = 50. Taikydami 1a uždavinyje gautas ir reikšmes, parinkę pasikliovimo lygmenį 0,95, rasti parametro pasikliautinąjį intervalą. Uždavinio sprendimas. Trečias uždavinys. Uždavinio formulavimas. Žinoma 50 požymių reikšmių. Atsižvelgę į 1 uždavinyje nubrėžtos santykinių dažnių histogramos pavidalą, suformuluojame neparametrinę hipotezę. Patikrinti šią hipotezę, parinkus reikšmingumo lygmenį 0,05 ir pritaikius X2 suderinamumo kriterijų. Ar teisingai apskaičiuota, pasitikrinti pritaikius prie imčių pateiktas šio uždavinio kontrolines sumas. Žinoma 50 požymių reikšmių (žr. uždavinio gale, b dalis). Apskaičiuoju imties skaitines charakteristikas. Sudarau intervalinę statistinę eilutę, kai intervalų skaičius k, nubrėžiu santykinių dažnių histogramą, atsižvelgiant į jos pavidalą, suformuluosiu neparametrinę hipotezę H2: t.y. a.d. X yra rodiklinis (eksponentinis). Šią hipotezę patikrinsiu, parinkęs 0,05 ir pritaikęs 2 kriterijų. Ar teisingai apskaičiavau, pasitikrinu prie imčių pateiktas kontrolines sumas. Žinoma 50 požymių reikšmių (žr. uždavinio gale, c dalis). Sudarysiu intervalinę statistinę eilutę, kai intervalų skaičius k, nubrėžiu santykinių dažnių histogramą, atsižvelgiant į jos pavidalą, suformuluosiu neparametrinę hipotezę H3: X U[a;b], t.y. a.d. X yra tolygusis. Šią hipotezę patikrinsiu, parinkęs 0,05 ir pritaikęs 2 suderinamumo kriterijų. Ar teisingai apskaičiavau, pasitikrinu prie imčių pateiktas kontrolines sumas. Diskretusis a.d. X – kurios nors sistemos gedimų skaičius per valandą. Per savaitę (168 valandos) gauti stebėjimo duomenys sugrupuoti ir išdėstyti didėjimo tvarka, t.y. turima tokia diskrečioji statistinė eilutė. Uždavinio sprendimas. Ketvirtas uždavinys. Uždavinio formulavimas. Žinoma, kad atsitiktinis dydis X yra normalusis. Jo parametras žinomas. Turėdami 50 normaliojo a.d. reikšmių, žinodami, kad patikrinu nulinę parametrinę hipotezę. Žinoma, kad atsitiktinis dydis X yra normalusis. Jo parametrai a ir nežinomas. Turėdami 50 normaliojo a.d. reikšmių, žinodami, kad patikrinu dvi nulines parametrines hipotezes. Žinodami, kad diskretusis a.d.). Vienas jo parametras n yra žinomas , o tikimybė p nežinoma. Žinodami įvykio A pasirodymų skaičių k, pasikliovimo lygmenį, rasti binominio skirstinio parametro p pasikliautinąjį intervalą 0,01 tikslumu. Žinodami reikšmingumo lygmenį α ir p0, patikrinu parametro p reikšmes hipotezę. Uždavinio sprendimas. Penktas uždavinys. Uždavinio formulavimas. Žinoma, kad a.d. X ir Y yra normalieji. Jų parametrai ax, ay, x ir y nežinomi. Žinomos šių a.d. imtys, kuriu didumas n. Parinkę reikšmingumo lygmenį 0,05, patikrinsiu dvi nulines parametrines hipotezes. Uždavinio sprendimas. Šeštas uždavinys. Uždavinio formulavimas. Žinoma, kad a.d. X ir Y yra normalieji. Žinomos a. d. imtys, kuriu didumas n. Reikia apskaičiuoti koreliacijos koeficientą r 10-4 tikslumu. Rasti regresijos tiesės lygtį. Parinkus pasikliovimo lygmenį 0,95, rasti koreliacijos koeficiento p pasikliautinąjį intervalą 0,01 tikslumu. Parinkus reikšmingumo lygmenį α 0,05, parinkti tik bendrąsias alternatyvas ir pritaikius reikšmingumo kriterijų: parinkus tris nulines parametrines hipotezes. Uždavinio sprendimas. Septintas uždavinys. Uždavinio formulavimas. Turima dviejų a.d. X ir Y koreliacinė lentelė. Reikia apskaičiuoti koreliacijos koeficientą r ir rasti regresijos tiesės lygtį. Parinkus pasikliovimo lygmenį 0,95, rasti koreliacijos koeficiento pasikliautinąjį intervalą 0,01 tikslumu. Parinkus reikšmingumo lygmenį 0,05 patikrinti dvi parametrines hipotezes. Uždavinio sprendimas. Aštuntas uždavinys. Uždavinio formulavimas. Turima koreliacinė lentelė. Reikia apskaičiuoti koreliacijos koeficientą r ir koreliacijos santykius. Reikia apskaičiuoti regresijos kreivių ( tiesės, hiperbolės, logaritminės kreivės (jei visi xi>0), rodiklinės kreivės) lygčių koeficientus a0 ir a1. Reikia įvertinti regresijos kreivių artumą duotiesiems taškams, kiekvienai regresijos kreivei apskaičiuodami vidutinę kvadratinę paklaidą 0,01 tikslumu. Uždavinio sprendimas. Išvada.

Rašto darbo duomenys
Tinklalapyje paskelbta2009-12-22
DalykasMatematikos uždavinys
KategorijaMatematika
TipasUždaviniai
Apimtis27 puslapiai 
Literatūros šaltiniai0
Dydis254.19 KB
Autoriuschektisaut
Viso autoriaus darbų19 darbų
Metai2008 m
Klasė/kursas2
Mokytojas/DėstytojasJ.K. Sunklodas
Švietimo institucijaVilniaus Gedimino Technikos Universitetas
FakultetasTransporto inžinerijos fakultetas
Failo pavadinimasMicrosoft Word Matematine statistika Nr. 58 mano [speros.lt].doc
 

Panašūs darbai

Komentarai

Komentuoti

 

 
[El. paštas nebus skelbiamas]

 
 
  • Uždaviniai
  • 27 puslapiai 
  • Vilniaus Gedimino Technikos Universitetas / 2 Klasė/kursas
  • J.K. Sunklodas
  • 2008 m
Ar šis darbas buvo naudingas?
Taip
Ne
0
0
Pasidalink su draugais
Pranešk apie klaidą